The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention

A. A. Algarni, M. C M Mussi, E. B. Moffa, Frank Lippert, Domenick Zero, W. L. Siqueira, Anderson Hara

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Objectives To compare the effects of stannous (Sn) and fluoride (F) ions and their combination on acquired enamel pellicle (AEP) protein composition (proteome experiment), and protection against dental erosion (functional experiment). Methods In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10), according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2), F (225ppm/13mM, NaF), Sn and F combination (Sn+F) and deionized water (DIW, negative control). The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10) were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d) and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d). Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry. Results Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%), Sn (67%) and F (42%) compared to DIW (all significantly different, p

Original languageEnglish (US)
Article numbere0128196
JournalPLoS One
Volume10
Issue number6
DOIs
StatePublished - Jun 1 2015

Fingerprint

Tooth Erosion
Dental Pellicle
Tin Fluorides
Enamels
enamel
Proteome
Dental Enamel
fluorides
proteome
Erosion
Ions
ions
Saliva
Proteins
saliva
Experiments
Electrospray Ionization Mass Spectrometry
cattle
Tandem Mass Spectrometry
Citric Acid

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention. / Algarni, A. A.; Mussi, M. C M; Moffa, E. B.; Lippert, Frank; Zero, Domenick; Siqueira, W. L.; Hara, Anderson.

In: PLoS One, Vol. 10, No. 6, e0128196, 01.06.2015.

Research output: Contribution to journalArticle

@article{cf57ac0c23b7456ab1087544ec99d1b2,
title = "The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention",
abstract = "Objectives To compare the effects of stannous (Sn) and fluoride (F) ions and their combination on acquired enamel pellicle (AEP) protein composition (proteome experiment), and protection against dental erosion (functional experiment). Methods In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10), according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2), F (225ppm/13mM, NaF), Sn and F combination (Sn+F) and deionized water (DIW, negative control). The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10) were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d) and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d). Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry. Results Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89{\%}), Sn (67{\%}) and F (42{\%}) compared to DIW (all significantly different, p",
author = "Algarni, {A. A.} and Mussi, {M. C M} and Moffa, {E. B.} and Frank Lippert and Domenick Zero and Siqueira, {W. L.} and Anderson Hara",
year = "2015",
month = "6",
day = "1",
doi = "10.1371/journal.pone.0128196",
language = "English (US)",
volume = "10",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention

AU - Algarni, A. A.

AU - Mussi, M. C M

AU - Moffa, E. B.

AU - Lippert, Frank

AU - Zero, Domenick

AU - Siqueira, W. L.

AU - Hara, Anderson

PY - 2015/6/1

Y1 - 2015/6/1

N2 - Objectives To compare the effects of stannous (Sn) and fluoride (F) ions and their combination on acquired enamel pellicle (AEP) protein composition (proteome experiment), and protection against dental erosion (functional experiment). Methods In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10), according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2), F (225ppm/13mM, NaF), Sn and F combination (Sn+F) and deionized water (DIW, negative control). The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10) were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d) and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d). Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry. Results Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%), Sn (67%) and F (42%) compared to DIW (all significantly different, p

AB - Objectives To compare the effects of stannous (Sn) and fluoride (F) ions and their combination on acquired enamel pellicle (AEP) protein composition (proteome experiment), and protection against dental erosion (functional experiment). Methods In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10), according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2), F (225ppm/13mM, NaF), Sn and F combination (Sn+F) and deionized water (DIW, negative control). The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10) were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d) and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d). Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry. Results Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%), Sn (67%) and F (42%) compared to DIW (all significantly different, p

UR - http://www.scopus.com/inward/record.url?scp=84932628661&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84932628661&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0128196

DO - 10.1371/journal.pone.0128196

M3 - Article

VL - 10

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 6

M1 - e0128196

ER -