The role of dynamic palmitoylation in Ca2+ channel inactivation

Joyce Hurley, Anne L. Cahill, Kevin P M Currie, Aaron P. Fox

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

N- and P/Q-type Ca2+ channels regulate a number of critical physiological processes including synaptic transmission and hormone secretion. These Ca2+ channels are multisubunit proteins, consisting of a pore-forming α1, and accessory β and α2δ subunits each encoded by multiple genes and splice variants. β subunits alter current amplitude and kinetics. The β2a subunit is associated with slowed inactivation, an effect that requires the palmitoylation of two N-terminal cysteine residues in β2a. In the current manuscript, we studied steady state inactivation properties of native N-and P/Q-type Ca2+ channels and recombinant N-type Ca2+ channels. When bovine α1B and β2a and human α2β were coexpressed in tsA 201 cells, we observed significant variations in inactivation; some cells exhibited virtually no inactivation as the holding potential was altered whereas others exhibited significant inactivation. A similar variability in inactivation was observed in native channels from bovine chromaffin cells. In individual chromaffin cells, the amount of inactivation exhibited by N-type channels was correlated with the inactivation of P/Q-type channels, suggesting a shared mechanism. Our results with recombinant channels with known β subunit composition indicated that inactivation could be dynamically regulated, possibly by alterations in β subunit palmitoylation. Tunicamycin, which inhibits palmitoylation, increased steady-state inactivation of Ca2+ channels in chromaffin cells. Cerulenin, another drug that inhibits palmitoylation, also increased inactivation. Tunicamycin produced a similar effect on recombinant N-type Ca2+ channels containing β2a but not β2b or β2a subunits mutated to be palmitoylation deficient. Our results suggest that Ca2+ channels containing β2a subunits may be regulated by dynamic palmitoylation.

Original languageEnglish
Pages (from-to)9293-9298
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume97
Issue number16
StatePublished - Aug 1 2000

Fingerprint

Lipoylation
Chromaffin Cells
Tunicamycin
Cerulenin
Physiological Phenomena
Manuscripts
Synaptic Transmission
Cysteine
Hormones
Pharmaceutical Preparations
Genes

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

The role of dynamic palmitoylation in Ca2+ channel inactivation. / Hurley, Joyce; Cahill, Anne L.; Currie, Kevin P M; Fox, Aaron P.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 16, 01.08.2000, p. 9293-9298.

Research output: Contribution to journalArticle

@article{32250695a2ea4290b57cefed7e98b914,
title = "The role of dynamic palmitoylation in Ca2+ channel inactivation",
abstract = "N- and P/Q-type Ca2+ channels regulate a number of critical physiological processes including synaptic transmission and hormone secretion. These Ca2+ channels are multisubunit proteins, consisting of a pore-forming α1, and accessory β and α2δ subunits each encoded by multiple genes and splice variants. β subunits alter current amplitude and kinetics. The β2a subunit is associated with slowed inactivation, an effect that requires the palmitoylation of two N-terminal cysteine residues in β2a. In the current manuscript, we studied steady state inactivation properties of native N-and P/Q-type Ca2+ channels and recombinant N-type Ca2+ channels. When bovine α1B and β2a and human α2β were coexpressed in tsA 201 cells, we observed significant variations in inactivation; some cells exhibited virtually no inactivation as the holding potential was altered whereas others exhibited significant inactivation. A similar variability in inactivation was observed in native channels from bovine chromaffin cells. In individual chromaffin cells, the amount of inactivation exhibited by N-type channels was correlated with the inactivation of P/Q-type channels, suggesting a shared mechanism. Our results with recombinant channels with known β subunit composition indicated that inactivation could be dynamically regulated, possibly by alterations in β subunit palmitoylation. Tunicamycin, which inhibits palmitoylation, increased steady-state inactivation of Ca2+ channels in chromaffin cells. Cerulenin, another drug that inhibits palmitoylation, also increased inactivation. Tunicamycin produced a similar effect on recombinant N-type Ca2+ channels containing β2a but not β2b or β2a subunits mutated to be palmitoylation deficient. Our results suggest that Ca2+ channels containing β2a subunits may be regulated by dynamic palmitoylation.",
author = "Joyce Hurley and Cahill, {Anne L.} and Currie, {Kevin P M} and Fox, {Aaron P.}",
year = "2000",
month = "8",
day = "1",
language = "English",
volume = "97",
pages = "9293--9298",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "16",

}

TY - JOUR

T1 - The role of dynamic palmitoylation in Ca2+ channel inactivation

AU - Hurley, Joyce

AU - Cahill, Anne L.

AU - Currie, Kevin P M

AU - Fox, Aaron P.

PY - 2000/8/1

Y1 - 2000/8/1

N2 - N- and P/Q-type Ca2+ channels regulate a number of critical physiological processes including synaptic transmission and hormone secretion. These Ca2+ channels are multisubunit proteins, consisting of a pore-forming α1, and accessory β and α2δ subunits each encoded by multiple genes and splice variants. β subunits alter current amplitude and kinetics. The β2a subunit is associated with slowed inactivation, an effect that requires the palmitoylation of two N-terminal cysteine residues in β2a. In the current manuscript, we studied steady state inactivation properties of native N-and P/Q-type Ca2+ channels and recombinant N-type Ca2+ channels. When bovine α1B and β2a and human α2β were coexpressed in tsA 201 cells, we observed significant variations in inactivation; some cells exhibited virtually no inactivation as the holding potential was altered whereas others exhibited significant inactivation. A similar variability in inactivation was observed in native channels from bovine chromaffin cells. In individual chromaffin cells, the amount of inactivation exhibited by N-type channels was correlated with the inactivation of P/Q-type channels, suggesting a shared mechanism. Our results with recombinant channels with known β subunit composition indicated that inactivation could be dynamically regulated, possibly by alterations in β subunit palmitoylation. Tunicamycin, which inhibits palmitoylation, increased steady-state inactivation of Ca2+ channels in chromaffin cells. Cerulenin, another drug that inhibits palmitoylation, also increased inactivation. Tunicamycin produced a similar effect on recombinant N-type Ca2+ channels containing β2a but not β2b or β2a subunits mutated to be palmitoylation deficient. Our results suggest that Ca2+ channels containing β2a subunits may be regulated by dynamic palmitoylation.

AB - N- and P/Q-type Ca2+ channels regulate a number of critical physiological processes including synaptic transmission and hormone secretion. These Ca2+ channels are multisubunit proteins, consisting of a pore-forming α1, and accessory β and α2δ subunits each encoded by multiple genes and splice variants. β subunits alter current amplitude and kinetics. The β2a subunit is associated with slowed inactivation, an effect that requires the palmitoylation of two N-terminal cysteine residues in β2a. In the current manuscript, we studied steady state inactivation properties of native N-and P/Q-type Ca2+ channels and recombinant N-type Ca2+ channels. When bovine α1B and β2a and human α2β were coexpressed in tsA 201 cells, we observed significant variations in inactivation; some cells exhibited virtually no inactivation as the holding potential was altered whereas others exhibited significant inactivation. A similar variability in inactivation was observed in native channels from bovine chromaffin cells. In individual chromaffin cells, the amount of inactivation exhibited by N-type channels was correlated with the inactivation of P/Q-type channels, suggesting a shared mechanism. Our results with recombinant channels with known β subunit composition indicated that inactivation could be dynamically regulated, possibly by alterations in β subunit palmitoylation. Tunicamycin, which inhibits palmitoylation, increased steady-state inactivation of Ca2+ channels in chromaffin cells. Cerulenin, another drug that inhibits palmitoylation, also increased inactivation. Tunicamycin produced a similar effect on recombinant N-type Ca2+ channels containing β2a but not β2b or β2a subunits mutated to be palmitoylation deficient. Our results suggest that Ca2+ channels containing β2a subunits may be regulated by dynamic palmitoylation.

UR - http://www.scopus.com/inward/record.url?scp=0034255238&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034255238&partnerID=8YFLogxK

M3 - Article

C2 - 10900273

AN - SCOPUS:0034255238

VL - 97

SP - 9293

EP - 9298

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 16

ER -