Transport and binding of insulin-like growth factor I through articular cartilage

A. Minerva Garcia, Nora Szasz, Stephen B. Trippel, Teresa I. Morales, Alan J. Grodzinsky, Eliot H. Frank

Research output: Contribution to journalArticle

57 Scopus citations

Abstract

This study focused on the role of insulin-like growth factor (IGF) binding proteins (IGFBPs) in cartilage on the transport and binding of IGF-I within the tissue. We have developed experimental and theoretical modeling techniques to quantify and contrast the roles of diffusion, binding, fluid convection, and electrical migration on the transport of IGF-I within cartilage tissue. Bovine articular cartilage disks were equilibrated in buffer containing 125I-IGF-I and graded levels of unlabeled IGF-I. Equilibrium binding, as measured by the uptake ratio of 125I-IGF-I in the tissue (free plus bound) to the concentration of labeled species in the buffer, was found to be consistent with a first-order reversible binding model involving one dominant family of binding sites within the matrix. Western ligand blots revealed a major IGF binding doublet around 23kDa, which has been previously shown to coincide with IGFBP-6. Diffusive transport of 125I-IGF-I through cartilage was measured and found to be consistent with a diffusion-limited reaction theoretical model incorporating first-order reversible binding. Addition of excess amounts of unlabeled IGF-I during steady state transport of 125I-IGF-I resulted in release of bound 125I-IGF-I from the tissue, as predicted by the diffusion-reaction model. In contrast, addition of the low-affinity Des(1-3)IGF-I analog did not result in release of bound 125I-IGF-I. Application of electric current was used to augment transport of IGF-I through cartilage via electroosmosis and electrophoresis. Taken together, our results suggest that a single dominant substrate family, the high-affinity IGFBPs, is responsible for much of the observed binding of IGF-I within cartilage. The data suggest that intratissue fluid flow, such as that induced by mechanical loading of cartilage in vivo may be expected to enhance IGF transport by an order of magnitude and that this increment may help to counterbalance the restrictions encountered by the immobilization of IGFs by the binding proteins.

Original languageEnglish (US)
Pages (from-to)69-79
Number of pages11
JournalArchives of Biochemistry and Biophysics
Volume415
Issue number1
DOIs
StatePublished - Jul 1 2003

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint Dive into the research topics of 'Transport and binding of insulin-like growth factor I through articular cartilage'. Together they form a unique fingerprint.

  • Cite this

    Garcia, A. M., Szasz, N., Trippel, S. B., Morales, T. I., Grodzinsky, A. J., & Frank, E. H. (2003). Transport and binding of insulin-like growth factor I through articular cartilage. Archives of Biochemistry and Biophysics, 415(1), 69-79. https://doi.org/10.1016/S0003-9861(03)00215-7