Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH)

Chee Wai Cheng, Indra J. Das

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Objective: The dose-volume histogram (DVH) has been accepted as a tool for treatment-plan evaluation. However, DVH lacks spatial information. A new concept, the z-dependent dose-volume histogram (zDVH), is presented as a supplement to the DVH in three-dimensional (3D) treatment planning to provide the spatial variation, as well as the size and magnitude of the different dose regions within a region of interest. Materials and Methods: Three- dimensional dose calculations were carried out with various plans for three disease sites: lung, breast, and prostate. DVHs were calculated for the entire volume. A zDVH is defined as a differential dose-volume histogram with respect to a computed tomographic (CT) slice position. In this study, zDVHs were calculated for each CT slice in the treatment field. DVHs and zDVHs were compared. Results: In the irradiation of lung, DVH calculation indicated that the treatment plan satisfied the dose-volume constraint placed on the lung and zDVH of the lung revealed that a sizable fraction of the lung centered about the central axis (CAX) received a significant dose, a situation that warranted a modification of the treatment plan due to the removal of one lung. In the irradiation of breast with tangential fields, the DVH showed that about 7% of the breast volume received at least 110% of the prescribed dose (PD) and about 11% of the breast received less than 98% PD. However, the zDVHs of the breast volume in each of seven planes showed the existence of high-dose regions of 34% and 15%, respectively, of the volume in the two caudal-most planes and cold spots of about 40% in the two cephalic planes. In the treatment planning of prostate, DVHs showed that about 15% of the bladder and 40% of the rectum received 102% PD, whereas about 30% of the bladder and 50% of the rectum received the full dose. Taking into account the hollow structure of both the bladder and the rectum, the dose-surface histograms (DSH) showed larger hot-spot volume, about 37% of the bladder wall and 43% of the rectal wall. The zDVHs of the bladder revealed that the hot-spot region was superior to the central axis. The zDVHs of the rectum showed that the high-dose region was an 8-cm segment mostly superior to the central axis. The serial array-like of the rectum warrants a closer attention with regard to the complication probability of the organ. Conclusions: Although DVH provides an averaged dose-volume information, zDVH provides differential dose-volume information with respect to the CT slice position. zDVH is a 2D analog of a 3D DVH and, in some situations, more superior. It provides additional information on plan evaluation that otherwise could not be appreciated. The zDVH may be used along with DVH for plan evaluation and for the correlation of radiation outcome.

Original languageEnglish (US)
Pages (from-to)1143-1150
Number of pages8
JournalInternational Journal of Radiation Oncology Biology Physics
Volume43
Issue number5
DOIs
StatePublished - Mar 15 1999
Externally publishedYes

Fingerprint

Rectum
histograms
Urinary Bladder
Breast
dosage
Lung
evaluation
Prostate
rectum
bladder
lungs
Lung Diseases
breast
Head
Radiation
planning

Keywords

  • Dose-volume histogram
  • Three dimensional treatment planning
  • Treatment plan evaluation
  • Z-dependent dose-volume histogram

ASJC Scopus subject areas

  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Radiation

Cite this

Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH). / Cheng, Chee Wai; Das, Indra J.

In: International Journal of Radiation Oncology Biology Physics, Vol. 43, No. 5, 15.03.1999, p. 1143-1150.

Research output: Contribution to journalArticle

@article{6f87a727bf9a4d699e6d79eecd9c95aa,
title = "Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH)",
abstract = "Objective: The dose-volume histogram (DVH) has been accepted as a tool for treatment-plan evaluation. However, DVH lacks spatial information. A new concept, the z-dependent dose-volume histogram (zDVH), is presented as a supplement to the DVH in three-dimensional (3D) treatment planning to provide the spatial variation, as well as the size and magnitude of the different dose regions within a region of interest. Materials and Methods: Three- dimensional dose calculations were carried out with various plans for three disease sites: lung, breast, and prostate. DVHs were calculated for the entire volume. A zDVH is defined as a differential dose-volume histogram with respect to a computed tomographic (CT) slice position. In this study, zDVHs were calculated for each CT slice in the treatment field. DVHs and zDVHs were compared. Results: In the irradiation of lung, DVH calculation indicated that the treatment plan satisfied the dose-volume constraint placed on the lung and zDVH of the lung revealed that a sizable fraction of the lung centered about the central axis (CAX) received a significant dose, a situation that warranted a modification of the treatment plan due to the removal of one lung. In the irradiation of breast with tangential fields, the DVH showed that about 7{\%} of the breast volume received at least 110{\%} of the prescribed dose (PD) and about 11{\%} of the breast received less than 98{\%} PD. However, the zDVHs of the breast volume in each of seven planes showed the existence of high-dose regions of 34{\%} and 15{\%}, respectively, of the volume in the two caudal-most planes and cold spots of about 40{\%} in the two cephalic planes. In the treatment planning of prostate, DVHs showed that about 15{\%} of the bladder and 40{\%} of the rectum received 102{\%} PD, whereas about 30{\%} of the bladder and 50{\%} of the rectum received the full dose. Taking into account the hollow structure of both the bladder and the rectum, the dose-surface histograms (DSH) showed larger hot-spot volume, about 37{\%} of the bladder wall and 43{\%} of the rectal wall. The zDVHs of the bladder revealed that the hot-spot region was superior to the central axis. The zDVHs of the rectum showed that the high-dose region was an 8-cm segment mostly superior to the central axis. The serial array-like of the rectum warrants a closer attention with regard to the complication probability of the organ. Conclusions: Although DVH provides an averaged dose-volume information, zDVH provides differential dose-volume information with respect to the CT slice position. zDVH is a 2D analog of a 3D DVH and, in some situations, more superior. It provides additional information on plan evaluation that otherwise could not be appreciated. The zDVH may be used along with DVH for plan evaluation and for the correlation of radiation outcome.",
keywords = "Dose-volume histogram, Three dimensional treatment planning, Treatment plan evaluation, Z-dependent dose-volume histogram",
author = "Cheng, {Chee Wai} and Das, {Indra J.}",
year = "1999",
month = "3",
day = "15",
doi = "10.1016/S0360-3016(98)00492-1",
language = "English (US)",
volume = "43",
pages = "1143--1150",
journal = "International Journal of Radiation Oncology Biology Physics",
issn = "0360-3016",
publisher = "Elsevier Inc.",
number = "5",

}

TY - JOUR

T1 - Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH)

AU - Cheng, Chee Wai

AU - Das, Indra J.

PY - 1999/3/15

Y1 - 1999/3/15

N2 - Objective: The dose-volume histogram (DVH) has been accepted as a tool for treatment-plan evaluation. However, DVH lacks spatial information. A new concept, the z-dependent dose-volume histogram (zDVH), is presented as a supplement to the DVH in three-dimensional (3D) treatment planning to provide the spatial variation, as well as the size and magnitude of the different dose regions within a region of interest. Materials and Methods: Three- dimensional dose calculations were carried out with various plans for three disease sites: lung, breast, and prostate. DVHs were calculated for the entire volume. A zDVH is defined as a differential dose-volume histogram with respect to a computed tomographic (CT) slice position. In this study, zDVHs were calculated for each CT slice in the treatment field. DVHs and zDVHs were compared. Results: In the irradiation of lung, DVH calculation indicated that the treatment plan satisfied the dose-volume constraint placed on the lung and zDVH of the lung revealed that a sizable fraction of the lung centered about the central axis (CAX) received a significant dose, a situation that warranted a modification of the treatment plan due to the removal of one lung. In the irradiation of breast with tangential fields, the DVH showed that about 7% of the breast volume received at least 110% of the prescribed dose (PD) and about 11% of the breast received less than 98% PD. However, the zDVHs of the breast volume in each of seven planes showed the existence of high-dose regions of 34% and 15%, respectively, of the volume in the two caudal-most planes and cold spots of about 40% in the two cephalic planes. In the treatment planning of prostate, DVHs showed that about 15% of the bladder and 40% of the rectum received 102% PD, whereas about 30% of the bladder and 50% of the rectum received the full dose. Taking into account the hollow structure of both the bladder and the rectum, the dose-surface histograms (DSH) showed larger hot-spot volume, about 37% of the bladder wall and 43% of the rectal wall. The zDVHs of the bladder revealed that the hot-spot region was superior to the central axis. The zDVHs of the rectum showed that the high-dose region was an 8-cm segment mostly superior to the central axis. The serial array-like of the rectum warrants a closer attention with regard to the complication probability of the organ. Conclusions: Although DVH provides an averaged dose-volume information, zDVH provides differential dose-volume information with respect to the CT slice position. zDVH is a 2D analog of a 3D DVH and, in some situations, more superior. It provides additional information on plan evaluation that otherwise could not be appreciated. The zDVH may be used along with DVH for plan evaluation and for the correlation of radiation outcome.

AB - Objective: The dose-volume histogram (DVH) has been accepted as a tool for treatment-plan evaluation. However, DVH lacks spatial information. A new concept, the z-dependent dose-volume histogram (zDVH), is presented as a supplement to the DVH in three-dimensional (3D) treatment planning to provide the spatial variation, as well as the size and magnitude of the different dose regions within a region of interest. Materials and Methods: Three- dimensional dose calculations were carried out with various plans for three disease sites: lung, breast, and prostate. DVHs were calculated for the entire volume. A zDVH is defined as a differential dose-volume histogram with respect to a computed tomographic (CT) slice position. In this study, zDVHs were calculated for each CT slice in the treatment field. DVHs and zDVHs were compared. Results: In the irradiation of lung, DVH calculation indicated that the treatment plan satisfied the dose-volume constraint placed on the lung and zDVH of the lung revealed that a sizable fraction of the lung centered about the central axis (CAX) received a significant dose, a situation that warranted a modification of the treatment plan due to the removal of one lung. In the irradiation of breast with tangential fields, the DVH showed that about 7% of the breast volume received at least 110% of the prescribed dose (PD) and about 11% of the breast received less than 98% PD. However, the zDVHs of the breast volume in each of seven planes showed the existence of high-dose regions of 34% and 15%, respectively, of the volume in the two caudal-most planes and cold spots of about 40% in the two cephalic planes. In the treatment planning of prostate, DVHs showed that about 15% of the bladder and 40% of the rectum received 102% PD, whereas about 30% of the bladder and 50% of the rectum received the full dose. Taking into account the hollow structure of both the bladder and the rectum, the dose-surface histograms (DSH) showed larger hot-spot volume, about 37% of the bladder wall and 43% of the rectal wall. The zDVHs of the bladder revealed that the hot-spot region was superior to the central axis. The zDVHs of the rectum showed that the high-dose region was an 8-cm segment mostly superior to the central axis. The serial array-like of the rectum warrants a closer attention with regard to the complication probability of the organ. Conclusions: Although DVH provides an averaged dose-volume information, zDVH provides differential dose-volume information with respect to the CT slice position. zDVH is a 2D analog of a 3D DVH and, in some situations, more superior. It provides additional information on plan evaluation that otherwise could not be appreciated. The zDVH may be used along with DVH for plan evaluation and for the correlation of radiation outcome.

KW - Dose-volume histogram

KW - Three dimensional treatment planning

KW - Treatment plan evaluation

KW - Z-dependent dose-volume histogram

UR - http://www.scopus.com/inward/record.url?scp=0032912871&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032912871&partnerID=8YFLogxK

U2 - 10.1016/S0360-3016(98)00492-1

DO - 10.1016/S0360-3016(98)00492-1

M3 - Article

VL - 43

SP - 1143

EP - 1150

JO - International Journal of Radiation Oncology Biology Physics

JF - International Journal of Radiation Oncology Biology Physics

SN - 0360-3016

IS - 5

ER -