Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization

Karl J. Lewis, Roy B.J. Choi, Emily Z. Pemberton, Whitney A. Bullock, Anthony Firulli, Alexander Robling

Research output: Contribution to journalArticle

Abstract

Wnt signaling plays a major role in bone metabolism. Advances in our understanding of secreted regulators of Wnt have yielded several therapeutic targets to stimulate osteoanabolism-the most promising of which is the Wnt inhibitor sclerostin. Sclerostin antibody recently gained approval for clinical use to treat osteoporosis, but the biology surrounding sclerostin antagonism is still incompletely understood. Numerous factors regulate the efficacy of sclerostin inhibition on bone formation, a process known as self-regulation. In previous communications we reported that the basic helix-loop-helix transcription factor Twist1-a gene know to regulate skeletal development-is highly upregulated among the osteocyte cell population in mice treated with sclerostin antibody. In this communication, we tested the hypothesis that preventing Twist1 upregulation by deletion of Twist1 from late-stage osteoblasts and osteocytes would increase the efficacy of sclerostin antibody treatment, since Twist1 is known to restrain osteoblast activity in many models. Twist1-floxed loss-of-function mice were crossed to the Dmp1-Cre driver to delete Twist1 in Dmp1-expressing cells. Conditional Twist1 deletion was associated with a mild but significant increase in bone mass, as assessed by dual energy x-ray absorptiometry (DXA) and microCT (µCT) for many endpoints in both male and female mice. Biomechanical properties of the femur were not affected by conditional mutation of Twist1. Sclerostin antibody improved all bone properties significantly, regardless of Twist1 status, sex, or endpoint examined. No interactions were detected when Twist1 status and antibody treatment were examined together, suggesting that Twist1 upregulation in the osteocyte population is not an endogenous mechanism that restrains the osteoanabolic effect of sclerostin antibody treatment. In summary, Twist1 inhibition in the late-stage osteoblast/osteocyte increases bone mass but does not affect the anabolic response to sclerostin neutralization.

Original languageEnglish (US)
JournalInternational journal of molecular sciences
Volume20
Issue number18
DOIs
StatePublished - Sep 9 2019

Fingerprint

antibodies
Antibodies
deactivation
bones
Osteocytes
Bone
Bone and Bones
osteoblasts
Osteoblasts
cells
mice
deletion
helices
Up-Regulation
communication
osteoporosis
osteogenesis
Basic Helix-Loop-Helix Transcription Factors
femur
X-Ray Microtomography

Keywords

  • mechanotransduction
  • osteocytes
  • osteoporosis
  • sclerostin
  • Twist1
  • Wnt

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization. / Lewis, Karl J.; Choi, Roy B.J.; Pemberton, Emily Z.; Bullock, Whitney A.; Firulli, Anthony; Robling, Alexander.

In: International journal of molecular sciences, Vol. 20, No. 18, 09.09.2019.

Research output: Contribution to journalArticle

@article{d6d9140988fe4e8898b6093fa5b16c10,
title = "Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization",
abstract = "Wnt signaling plays a major role in bone metabolism. Advances in our understanding of secreted regulators of Wnt have yielded several therapeutic targets to stimulate osteoanabolism-the most promising of which is the Wnt inhibitor sclerostin. Sclerostin antibody recently gained approval for clinical use to treat osteoporosis, but the biology surrounding sclerostin antagonism is still incompletely understood. Numerous factors regulate the efficacy of sclerostin inhibition on bone formation, a process known as self-regulation. In previous communications we reported that the basic helix-loop-helix transcription factor Twist1-a gene know to regulate skeletal development-is highly upregulated among the osteocyte cell population in mice treated with sclerostin antibody. In this communication, we tested the hypothesis that preventing Twist1 upregulation by deletion of Twist1 from late-stage osteoblasts and osteocytes would increase the efficacy of sclerostin antibody treatment, since Twist1 is known to restrain osteoblast activity in many models. Twist1-floxed loss-of-function mice were crossed to the Dmp1-Cre driver to delete Twist1 in Dmp1-expressing cells. Conditional Twist1 deletion was associated with a mild but significant increase in bone mass, as assessed by dual energy x-ray absorptiometry (DXA) and microCT (µCT) for many endpoints in both male and female mice. Biomechanical properties of the femur were not affected by conditional mutation of Twist1. Sclerostin antibody improved all bone properties significantly, regardless of Twist1 status, sex, or endpoint examined. No interactions were detected when Twist1 status and antibody treatment were examined together, suggesting that Twist1 upregulation in the osteocyte population is not an endogenous mechanism that restrains the osteoanabolic effect of sclerostin antibody treatment. In summary, Twist1 inhibition in the late-stage osteoblast/osteocyte increases bone mass but does not affect the anabolic response to sclerostin neutralization.",
keywords = "mechanotransduction, osteocytes, osteoporosis, sclerostin, Twist1, Wnt",
author = "Lewis, {Karl J.} and Choi, {Roy B.J.} and Pemberton, {Emily Z.} and Bullock, {Whitney A.} and Anthony Firulli and Alexander Robling",
year = "2019",
month = "9",
day = "9",
doi = "10.3390/ijms20184427",
language = "English (US)",
volume = "20",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "18",

}

TY - JOUR

T1 - Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization

AU - Lewis, Karl J.

AU - Choi, Roy B.J.

AU - Pemberton, Emily Z.

AU - Bullock, Whitney A.

AU - Firulli, Anthony

AU - Robling, Alexander

PY - 2019/9/9

Y1 - 2019/9/9

N2 - Wnt signaling plays a major role in bone metabolism. Advances in our understanding of secreted regulators of Wnt have yielded several therapeutic targets to stimulate osteoanabolism-the most promising of which is the Wnt inhibitor sclerostin. Sclerostin antibody recently gained approval for clinical use to treat osteoporosis, but the biology surrounding sclerostin antagonism is still incompletely understood. Numerous factors regulate the efficacy of sclerostin inhibition on bone formation, a process known as self-regulation. In previous communications we reported that the basic helix-loop-helix transcription factor Twist1-a gene know to regulate skeletal development-is highly upregulated among the osteocyte cell population in mice treated with sclerostin antibody. In this communication, we tested the hypothesis that preventing Twist1 upregulation by deletion of Twist1 from late-stage osteoblasts and osteocytes would increase the efficacy of sclerostin antibody treatment, since Twist1 is known to restrain osteoblast activity in many models. Twist1-floxed loss-of-function mice were crossed to the Dmp1-Cre driver to delete Twist1 in Dmp1-expressing cells. Conditional Twist1 deletion was associated with a mild but significant increase in bone mass, as assessed by dual energy x-ray absorptiometry (DXA) and microCT (µCT) for many endpoints in both male and female mice. Biomechanical properties of the femur were not affected by conditional mutation of Twist1. Sclerostin antibody improved all bone properties significantly, regardless of Twist1 status, sex, or endpoint examined. No interactions were detected when Twist1 status and antibody treatment were examined together, suggesting that Twist1 upregulation in the osteocyte population is not an endogenous mechanism that restrains the osteoanabolic effect of sclerostin antibody treatment. In summary, Twist1 inhibition in the late-stage osteoblast/osteocyte increases bone mass but does not affect the anabolic response to sclerostin neutralization.

AB - Wnt signaling plays a major role in bone metabolism. Advances in our understanding of secreted regulators of Wnt have yielded several therapeutic targets to stimulate osteoanabolism-the most promising of which is the Wnt inhibitor sclerostin. Sclerostin antibody recently gained approval for clinical use to treat osteoporosis, but the biology surrounding sclerostin antagonism is still incompletely understood. Numerous factors regulate the efficacy of sclerostin inhibition on bone formation, a process known as self-regulation. In previous communications we reported that the basic helix-loop-helix transcription factor Twist1-a gene know to regulate skeletal development-is highly upregulated among the osteocyte cell population in mice treated with sclerostin antibody. In this communication, we tested the hypothesis that preventing Twist1 upregulation by deletion of Twist1 from late-stage osteoblasts and osteocytes would increase the efficacy of sclerostin antibody treatment, since Twist1 is known to restrain osteoblast activity in many models. Twist1-floxed loss-of-function mice were crossed to the Dmp1-Cre driver to delete Twist1 in Dmp1-expressing cells. Conditional Twist1 deletion was associated with a mild but significant increase in bone mass, as assessed by dual energy x-ray absorptiometry (DXA) and microCT (µCT) for many endpoints in both male and female mice. Biomechanical properties of the femur were not affected by conditional mutation of Twist1. Sclerostin antibody improved all bone properties significantly, regardless of Twist1 status, sex, or endpoint examined. No interactions were detected when Twist1 status and antibody treatment were examined together, suggesting that Twist1 upregulation in the osteocyte population is not an endogenous mechanism that restrains the osteoanabolic effect of sclerostin antibody treatment. In summary, Twist1 inhibition in the late-stage osteoblast/osteocyte increases bone mass but does not affect the anabolic response to sclerostin neutralization.

KW - mechanotransduction

KW - osteocytes

KW - osteoporosis

KW - sclerostin

KW - Twist1

KW - Wnt

UR - http://www.scopus.com/inward/record.url?scp=85072011200&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072011200&partnerID=8YFLogxK

U2 - 10.3390/ijms20184427

DO - 10.3390/ijms20184427

M3 - Article

VL - 20

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 18

ER -