Two-dimensional electrophoretic analysis of compartment-specific hepatic protein charge modification induced by thioacetamide exposure in rats

Frank Witzmann, Carla D. Fultz, Raja S. Mangipudy, Harihara M. Mehendale

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Thioacetamide (TA) is a well-known hepatotoxicant. It has been reported that an obligate intermediate of TA binds to proteins with the formation of acetylimidolysine derivatives that are responsible for TA-induced hepatotoxic effects. TA has also been reported to cause chemically induced cell death via both apoptosis and necrosis. The objective of this study was 2-fold: first, to investigate the effect of TA exposure on protein charge modifications in the rat liver and second, to study the role of these molecular correlates in the regulation of cell death. Male Sprague-Dawley rats (200-225 g, 7-8 weeks old) were divided into four major groups and treated intraperitoneally with a 12-fold dose range of TA (50, 150, 300, and 600 mg TA/kg) dissolved in water. Using whole liver extracts, alterations in the hepatic protein pattern following treatment with the 12-fold dose range of TA were studied using high-resolution, two-dimensional poly-acrylamide gel electrophoresis and computerized image analysis. The results indicate that charge modification was clearly evident as early as 2 hr with the lowest dose of 50 mg TA/kg. At this dose and time endoplasmic reticulum proteins, calreticulin, grp78, and ER60 exhibited acidic charge variants. The effect of TA became more prominent with dose and time. Generally the elevation of charge modification indices (CMI) by TA appeared to reach a peak between 4 and 6 hr and then while CMI either leveled off or declined in the lower two doses of 50 and 150 mg TA/kg, it continued to remain elevated with the higher doses of 300 and 600 mg TA/kg. This dichotomy in the elevation of CMI is in close correspondence to the pattern of cell death observed with a similar dose range of TA, where lower doses (50 and 150 mg TA/kg) predominantly cause cell death via apoptosis while higher doses cause cell death via necrosis. Delayed charge modification was observed with the cytosolic hsc70s with the 300 and 600 mg TA/kg treatments, indicating that the reactive metabolite(s) slowly leak out into the cytosol from the endoplasmic reticulum. There were no alterations in the mitochondrial proteins hsp60 and grp7S, suggesting that TA has no effect on the mitochondrion, its effects primarily being confined to the endoplasmic reticulum. The concept of looking at these proteins as biomarkers of tissue injury has validity. These changes may be indicators of bioactivation and adduct formation and also may be signaling events in the regulation of the mode of cell death.

Original languageEnglish
Pages (from-to)124-132
Number of pages9
JournalToxicological Sciences
Volume31
Issue number1
StatePublished - 1996

Fingerprint

Thioacetamide
Rats
Liver
Proteins
Cell death
Cell Death
Endoplasmic Reticulum
Cause of Death
Necrosis
Apoptosis
Calreticulin
Liver Extracts
Mitochondria

ASJC Scopus subject areas

  • Toxicology

Cite this

Two-dimensional electrophoretic analysis of compartment-specific hepatic protein charge modification induced by thioacetamide exposure in rats. / Witzmann, Frank; Fultz, Carla D.; Mangipudy, Raja S.; Mehendale, Harihara M.

In: Toxicological Sciences, Vol. 31, No. 1, 1996, p. 124-132.

Research output: Contribution to journalArticle

@article{bd014aa96fb64b73a6eb36867a19da2c,
title = "Two-dimensional electrophoretic analysis of compartment-specific hepatic protein charge modification induced by thioacetamide exposure in rats",
abstract = "Thioacetamide (TA) is a well-known hepatotoxicant. It has been reported that an obligate intermediate of TA binds to proteins with the formation of acetylimidolysine derivatives that are responsible for TA-induced hepatotoxic effects. TA has also been reported to cause chemically induced cell death via both apoptosis and necrosis. The objective of this study was 2-fold: first, to investigate the effect of TA exposure on protein charge modifications in the rat liver and second, to study the role of these molecular correlates in the regulation of cell death. Male Sprague-Dawley rats (200-225 g, 7-8 weeks old) were divided into four major groups and treated intraperitoneally with a 12-fold dose range of TA (50, 150, 300, and 600 mg TA/kg) dissolved in water. Using whole liver extracts, alterations in the hepatic protein pattern following treatment with the 12-fold dose range of TA were studied using high-resolution, two-dimensional poly-acrylamide gel electrophoresis and computerized image analysis. The results indicate that charge modification was clearly evident as early as 2 hr with the lowest dose of 50 mg TA/kg. At this dose and time endoplasmic reticulum proteins, calreticulin, grp78, and ER60 exhibited acidic charge variants. The effect of TA became more prominent with dose and time. Generally the elevation of charge modification indices (CMI) by TA appeared to reach a peak between 4 and 6 hr and then while CMI either leveled off or declined in the lower two doses of 50 and 150 mg TA/kg, it continued to remain elevated with the higher doses of 300 and 600 mg TA/kg. This dichotomy in the elevation of CMI is in close correspondence to the pattern of cell death observed with a similar dose range of TA, where lower doses (50 and 150 mg TA/kg) predominantly cause cell death via apoptosis while higher doses cause cell death via necrosis. Delayed charge modification was observed with the cytosolic hsc70s with the 300 and 600 mg TA/kg treatments, indicating that the reactive metabolite(s) slowly leak out into the cytosol from the endoplasmic reticulum. There were no alterations in the mitochondrial proteins hsp60 and grp7S, suggesting that TA has no effect on the mitochondrion, its effects primarily being confined to the endoplasmic reticulum. The concept of looking at these proteins as biomarkers of tissue injury has validity. These changes may be indicators of bioactivation and adduct formation and also may be signaling events in the regulation of the mode of cell death.",
author = "Frank Witzmann and Fultz, {Carla D.} and Mangipudy, {Raja S.} and Mehendale, {Harihara M.}",
year = "1996",
language = "English",
volume = "31",
pages = "124--132",
journal = "Toxicological Sciences",
issn = "1096-6080",
publisher = "Oxford University Press",
number = "1",

}

TY - JOUR

T1 - Two-dimensional electrophoretic analysis of compartment-specific hepatic protein charge modification induced by thioacetamide exposure in rats

AU - Witzmann, Frank

AU - Fultz, Carla D.

AU - Mangipudy, Raja S.

AU - Mehendale, Harihara M.

PY - 1996

Y1 - 1996

N2 - Thioacetamide (TA) is a well-known hepatotoxicant. It has been reported that an obligate intermediate of TA binds to proteins with the formation of acetylimidolysine derivatives that are responsible for TA-induced hepatotoxic effects. TA has also been reported to cause chemically induced cell death via both apoptosis and necrosis. The objective of this study was 2-fold: first, to investigate the effect of TA exposure on protein charge modifications in the rat liver and second, to study the role of these molecular correlates in the regulation of cell death. Male Sprague-Dawley rats (200-225 g, 7-8 weeks old) were divided into four major groups and treated intraperitoneally with a 12-fold dose range of TA (50, 150, 300, and 600 mg TA/kg) dissolved in water. Using whole liver extracts, alterations in the hepatic protein pattern following treatment with the 12-fold dose range of TA were studied using high-resolution, two-dimensional poly-acrylamide gel electrophoresis and computerized image analysis. The results indicate that charge modification was clearly evident as early as 2 hr with the lowest dose of 50 mg TA/kg. At this dose and time endoplasmic reticulum proteins, calreticulin, grp78, and ER60 exhibited acidic charge variants. The effect of TA became more prominent with dose and time. Generally the elevation of charge modification indices (CMI) by TA appeared to reach a peak between 4 and 6 hr and then while CMI either leveled off or declined in the lower two doses of 50 and 150 mg TA/kg, it continued to remain elevated with the higher doses of 300 and 600 mg TA/kg. This dichotomy in the elevation of CMI is in close correspondence to the pattern of cell death observed with a similar dose range of TA, where lower doses (50 and 150 mg TA/kg) predominantly cause cell death via apoptosis while higher doses cause cell death via necrosis. Delayed charge modification was observed with the cytosolic hsc70s with the 300 and 600 mg TA/kg treatments, indicating that the reactive metabolite(s) slowly leak out into the cytosol from the endoplasmic reticulum. There were no alterations in the mitochondrial proteins hsp60 and grp7S, suggesting that TA has no effect on the mitochondrion, its effects primarily being confined to the endoplasmic reticulum. The concept of looking at these proteins as biomarkers of tissue injury has validity. These changes may be indicators of bioactivation and adduct formation and also may be signaling events in the regulation of the mode of cell death.

AB - Thioacetamide (TA) is a well-known hepatotoxicant. It has been reported that an obligate intermediate of TA binds to proteins with the formation of acetylimidolysine derivatives that are responsible for TA-induced hepatotoxic effects. TA has also been reported to cause chemically induced cell death via both apoptosis and necrosis. The objective of this study was 2-fold: first, to investigate the effect of TA exposure on protein charge modifications in the rat liver and second, to study the role of these molecular correlates in the regulation of cell death. Male Sprague-Dawley rats (200-225 g, 7-8 weeks old) were divided into four major groups and treated intraperitoneally with a 12-fold dose range of TA (50, 150, 300, and 600 mg TA/kg) dissolved in water. Using whole liver extracts, alterations in the hepatic protein pattern following treatment with the 12-fold dose range of TA were studied using high-resolution, two-dimensional poly-acrylamide gel electrophoresis and computerized image analysis. The results indicate that charge modification was clearly evident as early as 2 hr with the lowest dose of 50 mg TA/kg. At this dose and time endoplasmic reticulum proteins, calreticulin, grp78, and ER60 exhibited acidic charge variants. The effect of TA became more prominent with dose and time. Generally the elevation of charge modification indices (CMI) by TA appeared to reach a peak between 4 and 6 hr and then while CMI either leveled off or declined in the lower two doses of 50 and 150 mg TA/kg, it continued to remain elevated with the higher doses of 300 and 600 mg TA/kg. This dichotomy in the elevation of CMI is in close correspondence to the pattern of cell death observed with a similar dose range of TA, where lower doses (50 and 150 mg TA/kg) predominantly cause cell death via apoptosis while higher doses cause cell death via necrosis. Delayed charge modification was observed with the cytosolic hsc70s with the 300 and 600 mg TA/kg treatments, indicating that the reactive metabolite(s) slowly leak out into the cytosol from the endoplasmic reticulum. There were no alterations in the mitochondrial proteins hsp60 and grp7S, suggesting that TA has no effect on the mitochondrion, its effects primarily being confined to the endoplasmic reticulum. The concept of looking at these proteins as biomarkers of tissue injury has validity. These changes may be indicators of bioactivation and adduct formation and also may be signaling events in the regulation of the mode of cell death.

UR - http://www.scopus.com/inward/record.url?scp=26844484373&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=26844484373&partnerID=8YFLogxK

M3 - Article

VL - 31

SP - 124

EP - 132

JO - Toxicological Sciences

JF - Toxicological Sciences

SN - 1096-6080

IS - 1

ER -