Two-photon molecular excitation imaging of Ca2+ transients in langendorff-perfused mouse hearts

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

The ability to image calcium signals at subcellular levels within the intact depolarizing heart could provide valuable information toward a more integrated understanding of cardiac function. Accordingly, a system combining two-photon excitation with laser-scanning microscopy was developed to monitor electrically evoked [Ca2+]i transients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]i transients were recorded at depths ≤100 μm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked [Ca2+]i transients were highly synchronized among neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50% (t90-50%) and from 50 to 10% (t50-10%) of the peak [Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and 94 ± 6 ms (n = 19, P < 0.05 vs. 1 Hz) in rhod-2-loaded cardiomyocytes. [Ca2+]i decay was markedly slower in fura-2-loaded hearts (t90-50% at 1 Hz, 128 ± 9 ms and at 2 Hz, 88 ± 5 ms; t50-10% at 1 Hz, 214 ± 18 ms and at 2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2induced deceleration of [Ca2+]i decline resulted from increased cytosolic Ca2+ buffering, because the kinetics of rhod-2 decay resembled those obtained with fura-2 after incorporation of the Ca2+ chelator BAPTA. Propagating calcium waves and [Ca2+]i amplitude alternans were readily detected in paced hearts. This approach should be of general utility to monitor the consequences of genetic and/or functional heterogeneity in cellular calcium signaling within whole mouse hearts at tissue depths that have been inaccessible to single-photon imaging.

Original languageEnglish
JournalAmerican Journal of Physiology - Cell Physiology
Volume284
Issue number6 53-6
StatePublished - Jun 1 2003

Fingerprint

Molecular Imaging
Photons
Fura-2
Cardiac Myocytes
Imaging techniques
Calcium Signaling
Calcium
Cytochalasin D
Deceleration
Chelating Agents
Confocal Microscopy
Microscopic examination
rhod-2
Isolated Heart Preparation
Tissue
Scanning
Kinetics
Lasers

Keywords

  • 2,3-butanedione monoxime
  • BAPTA
  • Cytochalasin D
  • Fura-2
  • Rhod-2

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology
  • Physiology

Cite this

@article{609d2aa92c8540d1b4e38f76920b5e09,
title = "Two-photon molecular excitation imaging of Ca2+ transients in langendorff-perfused mouse hearts",
abstract = "The ability to image calcium signals at subcellular levels within the intact depolarizing heart could provide valuable information toward a more integrated understanding of cardiac function. Accordingly, a system combining two-photon excitation with laser-scanning microscopy was developed to monitor electrically evoked [Ca2+]i transients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]i transients were recorded at depths ≤100 μm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked [Ca2+]i transients were highly synchronized among neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50{\%} (t90-50{\%}) and from 50 to 10{\%} (t50-10{\%}) of the peak [Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and 94 ± 6 ms (n = 19, P < 0.05 vs. 1 Hz) in rhod-2-loaded cardiomyocytes. [Ca2+]i decay was markedly slower in fura-2-loaded hearts (t90-50{\%} at 1 Hz, 128 ± 9 ms and at 2 Hz, 88 ± 5 ms; t50-10{\%} at 1 Hz, 214 ± 18 ms and at 2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2induced deceleration of [Ca2+]i decline resulted from increased cytosolic Ca2+ buffering, because the kinetics of rhod-2 decay resembled those obtained with fura-2 after incorporation of the Ca2+ chelator BAPTA. Propagating calcium waves and [Ca2+]i amplitude alternans were readily detected in paced hearts. This approach should be of general utility to monitor the consequences of genetic and/or functional heterogeneity in cellular calcium signaling within whole mouse hearts at tissue depths that have been inaccessible to single-photon imaging.",
keywords = "2,3-butanedione monoxime, BAPTA, Cytochalasin D, Fura-2, Rhod-2",
author = "{Rubart-von der Lohe}, Michael and Exing Wang and Kenneth Dunn and Loren Field",
year = "2003",
month = "6",
day = "1",
language = "English",
volume = "284",
journal = "American Journal of Physiology",
issn = "0193-1857",
publisher = "American Physiological Society",
number = "6 53-6",

}

TY - JOUR

T1 - Two-photon molecular excitation imaging of Ca2+ transients in langendorff-perfused mouse hearts

AU - Rubart-von der Lohe, Michael

AU - Wang, Exing

AU - Dunn, Kenneth

AU - Field, Loren

PY - 2003/6/1

Y1 - 2003/6/1

N2 - The ability to image calcium signals at subcellular levels within the intact depolarizing heart could provide valuable information toward a more integrated understanding of cardiac function. Accordingly, a system combining two-photon excitation with laser-scanning microscopy was developed to monitor electrically evoked [Ca2+]i transients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]i transients were recorded at depths ≤100 μm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked [Ca2+]i transients were highly synchronized among neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50% (t90-50%) and from 50 to 10% (t50-10%) of the peak [Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and 94 ± 6 ms (n = 19, P < 0.05 vs. 1 Hz) in rhod-2-loaded cardiomyocytes. [Ca2+]i decay was markedly slower in fura-2-loaded hearts (t90-50% at 1 Hz, 128 ± 9 ms and at 2 Hz, 88 ± 5 ms; t50-10% at 1 Hz, 214 ± 18 ms and at 2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2induced deceleration of [Ca2+]i decline resulted from increased cytosolic Ca2+ buffering, because the kinetics of rhod-2 decay resembled those obtained with fura-2 after incorporation of the Ca2+ chelator BAPTA. Propagating calcium waves and [Ca2+]i amplitude alternans were readily detected in paced hearts. This approach should be of general utility to monitor the consequences of genetic and/or functional heterogeneity in cellular calcium signaling within whole mouse hearts at tissue depths that have been inaccessible to single-photon imaging.

AB - The ability to image calcium signals at subcellular levels within the intact depolarizing heart could provide valuable information toward a more integrated understanding of cardiac function. Accordingly, a system combining two-photon excitation with laser-scanning microscopy was developed to monitor electrically evoked [Ca2+]i transients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]i transients were recorded at depths ≤100 μm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked [Ca2+]i transients were highly synchronized among neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50% (t90-50%) and from 50 to 10% (t50-10%) of the peak [Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and 94 ± 6 ms (n = 19, P < 0.05 vs. 1 Hz) in rhod-2-loaded cardiomyocytes. [Ca2+]i decay was markedly slower in fura-2-loaded hearts (t90-50% at 1 Hz, 128 ± 9 ms and at 2 Hz, 88 ± 5 ms; t50-10% at 1 Hz, 214 ± 18 ms and at 2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2induced deceleration of [Ca2+]i decline resulted from increased cytosolic Ca2+ buffering, because the kinetics of rhod-2 decay resembled those obtained with fura-2 after incorporation of the Ca2+ chelator BAPTA. Propagating calcium waves and [Ca2+]i amplitude alternans were readily detected in paced hearts. This approach should be of general utility to monitor the consequences of genetic and/or functional heterogeneity in cellular calcium signaling within whole mouse hearts at tissue depths that have been inaccessible to single-photon imaging.

KW - 2,3-butanedione monoxime

KW - BAPTA

KW - Cytochalasin D

KW - Fura-2

KW - Rhod-2

UR - http://www.scopus.com/inward/record.url?scp=0038075460&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038075460&partnerID=8YFLogxK

M3 - Article

C2 - 12584115

AN - SCOPUS:0038075460

VL - 284

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0193-1857

IS - 6 53-6

ER -